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Abstract. The applicability of diffusion theory for the determination of tissue o p t i d  properties 
from time-resolved reflectance specuoscopy is investigated. Analytical expressions from 
diffusion theory using the three most commonly assumed boundary conditions at the air-rissue 
interface are compared with time-resolved Monte Carlo simulations and mesurements on tissue 
phantoms. The effects of the choice of the boundary conditions on the accuracy of the findings 
for the optical parameters are quantified, and criteria for accurate curve-fitting algorithm are 
develooed. 

1. Introduction 

The determination of optical properties (absorption pa and reduced scattering coefficient 
&) through time-resolved reflectance spectroscopy performed on the surface of biological 
tissues can yield useful information about a variety of physiological parameters (Wilson 
et al 1989). A few examples are blood-tissue oxygenation (Chance et al 1988, Benaron 
et al 1992), diabetes (Eppstein and Bursell 1992, Kohl et at 1995), diagnosis of cancer 
(Ramanujam ef al 1994), and arteriosclerosis (Deckelbaum 1994). However, the correct 
quantitative interpretation of measured data sets with respect to the optical properties is still 
a major problem. Monte Carlo simulations have been found to describe the propagation of 
light in tissue with high accuracy (Flock et al 1989). The drawback of such simulations 
is that they are very time consuming and thus not desirable in a clinical environment. A 
much faster way to extract optical properties from experimental data is to fit analytical 
expressions derived from diffusion theory. However, diffusion theory has its weaknesses 
because it is only an approximation to the more accurate, but in general not analytically 
solvable, equation of radiative transfer. The complexity of the analytical expression found 
from diffusion theory varies furthermore with the assumed boundary conditions at the tissue- 
air interface. 

In the work presented here, the formulas found from diffusion theory under three 
commonly used boundary conditions (partial current, extrapolated, and zero) are first briefly 
introduced and compared with each other. It is shown that diffusion theory with the 
extrapolated boundary condition (EPB) and diffusion theory with the partial current boundary 
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condition (PCB) predict almost the same reflectance for a given set of optical properties and 
source-detector separation. Compared with these two cases, diffusion theory with the zero 
boundary condition (ZBC) underestimates the amplitude of the signal and displays sharper 
maxima. 

The time-resolved reflectance determined by diffusion theory with its different boundary 
conditions is then compared with time-resolved Monte Carlo simulations. The errors in 
the determination of the optical properties (pa and pi) using fitting algorithms based on 
diffusion theory with the ZBC and EPB are quantified It is shown that the absorption 
coefficient can be obtained with high accuracy, while both theories fail to give accurate 
values for p:. Finally, Monte Carlo simulations are compared with timeresolved 
experiments on tissue phantoms. 

2. Diffusion theory 

2.1. Baric equafions 

The equation of radiative transfer (Case and Zweifel 1967, Ishimaru 1978b) forms the basis 
of almost all the modelling that is currently being conducted in tissue optics. However, 
in only the simplest cases is it possible to obtain an analytical solution to this equation. 
Applications to practical situations generally require restrictive approximations. Under the 
assumption that the reduced scattering coefficient, p: = (1 -g)p8, where ps is the scattering 
coefficient and g the mean cosine of the scattering angle, is much larger than the absorption 
coefficient, pa. the diffusion equation for a homogenous medium can be derived (Patterson 
et al 1989, Ish- 1978a): 

(1) (i/c)(a/at)@(T, t )  - O W r ,  t )  + pLa@(r ,  t )  = s(r, t) 

where @(r,  t )  is the diffuse photon fluence rate at the position r ,  c is the speed of light in 
the tissue, S(r, f) describes the photon source, and D = {3[p.. +pi]]- '  is the diffusion 
coefficient. 

In practical applications such as measurements on biological tissues, the photon fluence 
rate @ is not measured directly. The measurable quantity is the number of photons R(r, f )  
that reach the surface per unit area per unit time at a given sourcedetector separation r .  
R(r, t )  is called the reflectance and can be calculated from Fick's law (Duderstadt and 
Hamilton 1976, Patterson ef a f  1989) by 

R(r, t )  = I - O W r ,  z ,  t)lz=ol. (2) 

Solutions for equation (1) have been given for a variety of geometies (Anidge et af 
1992). In the study presented here, we concentrate on the solution for a semi-infinite 
medium and how this solution can be used to quantify the optical properties from a given 
data set. Before the different boundary conditions for the air-tissue interface are discussed, 
the source term S ( r ,  t )  must be specified to solve the diffusion equation (1). This is 
equivalent to giving an initial condition. In practical applications the source is typically a 
laser beam which strikes the tissue at 90". The points at which the first scattering events 
occur are distributed exponentially into the medium, and the source can be modelled as a 
line of isotropic point sources with different strengths. Usually. this source distribution is 
further simplified by assuming that all incident photons are initially scattered at a depth 
equal to the transport mean free path (Patterson et a[ 1989, Haskell et al 1994) 

(3) 20 = [Pa + Fir1 
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so that the actual source term becomes a simple delta function 

S(T, t) = S(r = 0, z = zo. t = 0). (4) 

In this geometly the air-tissue interface is located in the a plane perpendicular to the z axis, 
at z = 0, and the laser beam propagates along the z axis. The three most commonly applied 
boundary conditions that describe the ah-tissue interface will now be briefly reviewed and 
compared. 

2.2. The partial current boundary condition (PCB) 

It is reasonable to assume that light leaving the scattering medium through an air-tissue 
interface does not retnm iota the medium. This means that the photon flux from the air 
into the tissue has to be zero. For a semi-infinite volume containing scatterers for all z =- 0 
the directional photon flux J+z at the surface is given in the diffusion approximation by 
(Glasstone 1955, Keijzer eta1 1988, Moulton 1990, Haskell et a1 1994) 

(5) J+L = @(r, z = O.t)/4 - (ADI2)(a/az)@(r, Z, t)l,o = 0 

with 

A = (1 + rd/(l  - rd) (6) 

(see also figure 1). Here rd is the internal reflectance, due to a refractive index mismatch 
between the air and the tissue. Groenhuis er a l  (1983) offer an approximate expression for 
rd as a function of  n = nzissue/nOir: 

rd = -1.440n-’ + 0.710n-’ + 0.668 + 0.0636n. (7) 

The diffusion equation (1) with initial condition (4) and the so-called partial current 
boundary condition (5)  can be solved analytically, for example with the Laplace 
transformation method (Carslaw and Jaeger 1959, Svaasand et a1 1993). This leads to 
the following expression for the reflectance (Moulton 1990, Avraham er a1 1991): 

RPCB(T.  t )  = (4Dir~) -~’~t -~’~zo  exp(-p,ct) exp(-(zi + r2) /4Dct )Tp~~( t )  

Tpca(t) = (I/a)(l - (1/@)fiexp((1 +~)*/Ors)erfc(ll +a)/&% 

(8) 

where 

(9) 

with 

01 = zoA/ct 
f l =  4DA/zo = 4A/3 

and erfc(x) is the complementary error function defined by 

erfc(x) -( 2 1 - [ exp(-C2) d:) 

f i  
Equation (8) can be fitted to a given data set to yield the optical pmameters pa and 

pi. Because RPCB depends highly nonlinearly on wa and pi, a nonlinear fitting routine, 
for example the Levenberg-Marquardt algorithm (Press et al 1992), has to be applied. 
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2.3. The extrapolated boundary condition (EPBJ 

Instead of solving equation (1) with the boundary condition (5) directly, often an alternative 
approach is pursued, invoking the principle of image sources (Glasstone 1955, Farrell et a1 
1992, Jacques et al 1993). If the photon fluence rate @ is extrapolated into the air, using 
a straight line with the same slope as at the au-tissue boundary, (a/az)@(r, z ,  t)lz=o, the 
fluence rate vanishes at a distance ze (figure 1) given hy 

(13) 
Here, use was made of equation (5). The distance ze is called the linear exlrapolation 
distance and leads to the so-called extrapoIated boundary condition 

ze = @(z = O)/[(a/az)$(r, z ,  t)12=ol = 2AD. 

@(r, z = -zc, i) = 0. (14) 
It is important to realize that, in postulating that the photon flux vanishes at the 

extrapolated boundary, there is no implication, either fkom transport theory or diffusion 
theory, that the flux is actually zero there. The concept of the hypothetical boundary where 
the flux vanishes as a result of linear extrapolation is merely a convenient mathematical 
device used to obtain a simple boundary condition. 

Figure 1. Extrapolation of the photon fluence at a plane interface bciween the diffusive medium 
and air. 

The extrapolated boundary condition (14) is easily fulfilled if besides the original 
point source at zo an image source with the same strength but negative sign is placed 
at z p  = zo + 22, (figure 2) in an infinite medium. The time-dependent fluence, as discussed 
by Moulton (1990), can he written as a sum of two terms 
@(r,  z ,  t )  = ~ ( 4 D n c t ) - ~ / ~ e x p ( - / ~ . , c t )  

(15) 
The first term is due to the point source inside the tissue at z = zo and the second term stems 
from the negative image source at z = z,,. Using equation (2), the reflectance becomes 

x(z0 exp(-(zi + r2)/4Dct) + zp exp(-(zi + r2)/4Dct)). 

x(exp(-[(z - ZO)’ + r21/4Dct) - exp(-[(z + 2,)’ + r21/4Dct)). 

REP&, t )  = i(4Dnc)- 3/2 i -5/2 exp(-&.ct) 

(16) 
Like RPCB. R ~ p a  depends nonlinearly on p,, and p:, and a nonlinear fitting routine 

has to be applied. However, the disappearance of the error function facilitates the fitting 
algorithm. The partial derivations with respect to p. and /L;, which are needed for the 
Levenberg-Marquardt routine, are readily found and are given in the appendix. 
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Figure 2. An illustration of the extrapolated and zero-boundary conditions. 

2.4. The zero-boundary condition (ZBC) 

Physically incorrect but mathematically appealing is the so-called zero-boundary condition, 
which was first suggested by Patterson et al (1989). Here, the fluence r$ is set to zero directly 
at the tissue-air interface rather than at an extrapolated distance z e  above the surface. The 
boundary condition becomes 

@(rr z = 0, t )  = 0 (17) 
and can be fulfilled by placing an image source with a negative sign at z = -zo (figure 2). 
The fluence is again a sum of two terms (Patterson et a1 1989): 

@(r, z,  t) = ~ ( 4 D ~ c t ) - ” ~ e x p ( - p , c t )  
x(exp(-[(z - zo)’ + r21/4Dct) - exp(-[(z + ZO)’ + r21/4Dct)). (18) 

Using equation (3). the reflectance is found: 

Rzac(r. t )  = ( 4 D n ~ ) - ~ ~ ~ t - ~ ~ ~ z 0 e x p ( - ~ ~ c t ) e x p ( - ( z ~  + r2)/4Dct). (19) 
To fit equation (19) to a given data set, it is advantageous to take the natural logarithm 

(20) 

where K = - i ln(3(pL, + wL:)) - i In(4nc) + In(zo). Furthermore, i t  is assumed that r2 >> 2:. 

which holds true for most practical purposes. The p: and p. dependence of K should be 

of both sides of the equation. This gives 

In[Rzac(r, r ) ]  = K - i In@) - (ct + 3r2/4ct)pL, - (3r2/4cr)p; 
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ignored, and K should be eeated as an independent fitting parameter because it is usually 
extremely problematic to determine the absolute amplitude of the reflectance signal in time- 
resolved experiments. This also has the advantage that equation (20) is linear with respect 
to the optical properties pa and &. Simple and fast mean least-squares fitting algorithms 
can be implemented to determine fi0 and fi; from a given data set (Press et al 1992). 

It appears that the physically incorrect ZBC yields the simplest mathematical tool 
for the determination of optical properties. The PCB, which is accurate in terms of the 
diffusion approximation, is most difficult to implement. In the following sections, we will 
establish which one of the three boundary conditions yields the most reliable theory for the 
determination of optical properties from actual measurements. 

2.5. Comparison of different boundary conditions 

Before we compare results from diffusion theory with Monte Carlo simulations and 
experiments, it is educational to compare the predictions of the theory with different 
boundary conditions. To quantity the difference between the prediction of the timeresolved 
diffusion theory with the ZBC, EPB and PCB, we define the ratios of 

A H Hielscher et al 

One can observe several interesting facts. First, the ratios only depend on the time t 

RI = TPCB (0 (22) 

and not on the source-detector separation r. It can be easily seen that 

Rz = R i / R 3  = 2Tpca(t)(l+ (Zp/Zo) exp((zi - i$)/4DCt))-'. (W 

(251 

(26) 
R3(t -+ caj can be determined from equation (23) by expanding the exponent and using 
zp = zo + 2ze = zo + 4AD and D/ZO = f .  To derive R1 (t -+ CO), first use has to be made 
of the asymptotic expansion of the complementary error function (Abramowitz and Stegun 
1972): 

Furthermore, for the limit t -+ CO, we find that 
2 Rj(t  -+ CO) = Rl(t  + CO) = l + i ; A  G ?  

which leads to 

Rz(t + 00) = 1. 

erfc(x -+ 00) - [exp(-xz)/fi](~/x - 1 p X 3  + o(l/xsj) (27) 
with x = (1 +a)/.J$ (see equations (Q-(12)). Subsequently, the binomial expansion has 
to be applied to the terms (l+cr)-". Equation (25) shows that at late times, the ratios R1 and 
Rj depend only on the index mismatch of the tissue-air interface and that R p c ~  and R E ~ B  
are the same for t + ca. Assuming a value of nlilSUE = 1.35, we obtain from equations (7) 
and (61, A = 2.919 and subsequently from equation (23, = 2.946. This means that R z ~ c  
underestimates the reflectance by a factor of 2.946 for t --f 00. Furthermore, equations (23) 
and (24) suggest that the influence of fia on the ratios defined above is small, while a rather 
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Figure 3. The ratio of reflectance calculated with RPCB and (a) [l +2/3A]Rzar and (b) REps 
as a function of time, for various pi. 

strong dependence on pk can be observed. Figure 3(a) displays the ratio of Rpca divided 
by ~ R z n c  as a function o f t  for dierent  pi. The absorption coefficient pLo is 0.2 cm-' in 
all cases. In general, it can be Seen that for small t ,  qRzac overestimates the signal. As I 
increases the difference between Rpca and ~ R z a c  becomes smaller and smaller. The two 
theories merge faster as pi is increased. To obtain an error smaller than IO%, - 1.3 ns has 
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to elapse for the case of pi = 5 cm-', but only 160 ps have to pass for p: = 40 cm-'. 
Figure 3(b) displays the ratio Rz, that is the predicted reflectance when the PCB is used 

divided by the predicted reflectance when the EPB is used. It is shown that for t --z 00 

the ratio Rz is equal to unity and no differences between the two boundary conditions exist 
(equation (26)). For small times, Rz is larger than unity which means that R E ~ B  yields a 
too small signal. For large times, RZ is smaller than unity, therefore R E ~ B  is slightly larger 
than R p c ~ .  However the difference between R E ~ B  and R ~ C B  is very small and almost 
always less than 2%. The two theories agree better as pk increases. 

A H Hielscher et a[ 

3. Monte Carlo simulations and diffusion theory 

3.1. Monte Carlo simulations 

Monte Carlo simulations are one of the most powerful tools available for the solution 
of radiative transfer problems. The advantage of Monte Carlo simulations is that no 
approximations are necessary, and complex geometries and optical inhomogeneities can 
be modelled. As a result, Monte Carlo simulations have been used extensively to study 
a variety of transport problems, especially in reactor theory (Briesmeister 1986, tux and 
Koblinger 1991). In the study presented here, Monte Carlo simulations were used as 'gold 
standards' to test the results of the diffusion theory calculations. 

A steady state Monte Carlo model (Wang et a1 1995) was adapted to simulate time- 
resolved propagation of photons in a semi-infinite medium (Jacques et a1 1995). A 6 
function pulse is injected into the tissue with given pa, ps, and g. The reflectance R(r,  t )  
in nun-' ns-' is recorded as a function of the sourcdetector separation r and time t .  
The spatial resolution was 1 mm over a total distance of 4 cm. The time resolution was 
chosen to be 10 ps over a total time of 2.56 ns, giving 256 data points. The Monte Carlo 
model accounts for the index mismatch at the ai-tissue boundary by calculating the Fresnel 
reflection (Wang et a1 1995). 

For most of the simulations in this work, two million photons were launched into 
the tissue. Each simulation took - 1248 h on a Sun SPARC station 10, depending on 
the optical properties. We found that the larger the ratio pi/pa, the longer the time for 
one simulation (Wang and Jacques 1995). Acceptable standard deviations for each data 
point could be achieved for source-detector separation up to 4 cm when &,/pa < 30. With 
increasing &/pa ratio the sourcedetector separation had to be decreased to assure accurate 
Monte Carlo simulation results in reasonable computation time. To further decrease high- 
fiequency noise a moving average algorithm (Press et al 1992) was applied to smooth the 
data. 

3.2. Comparison of Monte Carlo simulations with diffusion theory with the ZBC 

Figure 4(a) shows Monte Carlo simulations for a medium with pa = 0.2 cm-' ,pi  = 5 cm-', 
and g = 0.92, for different source-detector separations. Also displayed are the reflectance 
~ R Z B C  predicted by diffusion theory with the ZBC (equation (19)) and the reflectance R E ~ B  
predicted by diffusion theory with the EPB (equation (16)). The error bars indicate selected 
standard deviations that were calculated from 10 simulations with the same optical properties 
and sourcedetector separations. In this section only the ~ R Z B C  curves are compared to the 
Monte Carlo simulations. The R E ~ B  curves will be discussed in the next section. As can 
be seen, for times larger than - 1 ns diffusion theory and Monte Carlo simulations agree 
very well. For smaller times, 7 R z ~ c  increasingly overestimates the reflectance. The largest 
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Figure 4. A comparison of Monte Carlo simulations with reflectance predicted by ~ R Z B C  and 
R E p s  for (a) three different source-detector sepantions, where the optical properties are the 
same in all cases (wa = 0.2 cm-' and wi = 5 cm-') and (b) two different I.:, where the 
absorption coefficient is w, = 0.2 cm-', and the source-detector separation is 1 cm. 

differences can be observed for the smallest source-detector separations of 1 cm. 
Figure 4(b) displays Monte Carlo simulations and predictions of qRzsc and R E ~ B  for 

two different reduced scattering coefficients. The source-detector separation is fixed at 1 cm. 
As the scattering coefficient increases, agreement between simulations and diffusion theory 
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improves. Thus, increasing either the source-detector separation or the reduced scattering 
coefficient leads to a better agreement between diffusion theory and simulations, similar to 
findims repoaed by Jacques (1989). 

To quantify the agreement between diffusion theory with the ZBC and Monte Carlo 
simulations, a linear least-squares fitting algorithm based on equation (20) is used to extract 
pa and j.~; from the Monte Carlo simulations displayed in figure 4. For the fit the data 
points are weighted by the inverse of their variance. However, not all data available from 
the simulations are used for the fit. The typical dynamic range of time-resolved experiments 
based on timecorrelated single-photon counting is lo4. Therefore, only data points with 
a reflectance of at least times the maximum reflectance Rmer(tmox) are used for the 
fit. This defines a time range [ta, 41 from which data points are taken. Furthermore, a 
variable offset time t' from to is introduced, before which all data points are disregarded 
for the fit. This is done to investigate how neglecting various portions of the initial slope 
influences the outcome of the fit. It has just been shown (figure 4) that the discrepancy 
between diffusion theory and Monte Carlo simulation is largest for small t .  Increasing t* 
means cutting increasing amounts of the early part of the reflectance. The fitting algorithm 
yields different values for &(fit) and pa@) depending on t*. These values are compared 
with the known optical properties from the Monte Carlo simulations, p:(MC) and po(MC), 
by defining the relative fitting errors for pLa or pi (denoted &,) as 

(28) 

A H Hielscher 'et a1 

relative pi,, fitting error = [&(fit) -~/Lh,s(MC)]/&s(MC). 

Figure 5(a) displays the relative error in the determination of as a function of the 
above-defined offset time t* for three different source-detector separations. The optical 
properties are the same for all three curves. The arrows indicate t* for which only data 
points with i tmox are admitted for the fit. This means that all data points before the 
maximum reflection R,, are disregarded. Taking all data leads to a strong overestimation 
of p.; in all cases. This overestimation is reduced when t* is increased, which means more 
of the leading edge of the impulse response is disregarded for the fit. For a source-detector 
separation of 1 cm, the minimal error occurs when the data are fitted for t 2 tmox. However, 
even in this case, pi is still overestimated by 25%. An increase in source-detector separation 
leads to a smaller error in the b; determination. If the source-detector separation becomes 
larger than 3 cm and the data are fitted for points t > t,,, the error in the determination 
of pi becomes smaller than 5%. 

In figure 5(b), the pi fitting error is shown for three different scattering coeflicienh 
while the source-detector separation is kept constant. With increasing scattering coefficient 
the determination of pi becomes more accurate. The largest error occurs when all data 
points are used for the fit. Increasing t' leads to a smaller error. However, omitting too 
many points beyond tmnx results in a larger variance of the fitting parameters because the 
number of points available for a fit decreases. We found that fitting data for points t > t,, 
gives the best results in terms of accuracy and smallest variance in the extraction of pi. 
Figure 6 shows the findings for the determination of pa. Again, using all data leads to 
an overestimation of &; here, however, only by 614%. Omitting some early data points 
gives excellent fits of &a even for small source-detector separations and low scattering 
coefficients. 

We conclude that with a simple linear fitting algorithm based on Rmc(r, t), that is 
the time-resolved reflection determined by diffusion theory with the ZBC, it is possible to 
determine the reduced scattering coefficient within 5% accuracy when the source-detector 
separation is larger than 3 cm or piU.:Ij.~~ > 50. The determination of pa can be considered 
exact within 2% as long as very early parts of the time-resolved reflectance are neglected. 
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3.3. Comparison of Monte Carlo simulations with diffusion theory with the EPB 

Beside Monte Carlo simulations and R z ~ c ,  figure 4 also shows the time-resolved reflectance 
R ~ p ~ ( r , t )  (equation (I@), which was derived from diffusion theory with the EPB. 
Surprisingly RBpB does not give a better description than RzBc. While R z ~ c  overestimates 
the reflectance at small source-detector separations and low scattering coefficients, REPB 
underestimates the reflectance in these cases. Thus, it seems that the more complicated 
approach of an extrapolated boundary does not improve the accuracy where the diffusion 
theory with ZBC fails. 

That is furthermore supported by figure 7. Here the fitting error in the determination 
of pt using an algorithm based on R E ~ B  is displayed as a function of I * .  The curves are 
similar to those shown in figure 5 for the case of R z ~ c .  However, the negative errors 
indicate that pi is now underestimated. For large sourcedetector separation and large pi, 
the algorithm based on R E ~ B  gives about the same error as the method based on RZBC, 
only this time with a negative sign. 

Figure 8 shows the results for the determination of pa when a fitting algorithm based 
on REpa  is used. Similar to the results shown in figure 6, using all data leads here to 
an overestimation of pa by approximately 845%. Omitting some early data points gives 
excellent fits of pLa even for small source-detector separations and low scattering coefficients. 
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Figure 7. The relative error in the prediction of p:, when R ~ p a  is used for fitting different 
parts of the reflectance data, indicated by the offset time t'. The three curves correspond to 
three different sowe-detector separations and the arrows indicate data sets where only data 
points t 2 t,, are used for the fitting. 

3.4. Comparison of Monte Carlo simulations with diffusion theory with the PCB 

As already pointed out in subsection 2.5, the difference between R ~ p s  and R p m  is smaller 
than 2%. Depending on the number of photons and optical parameters used, the Monte 
Carlo simulations usually have a variance larger than 5%. This remark also holds for actual 
measurements. Thus, for all practical purposes, no improvement is gained when RPCB is 
used. The appearance of the error function in equation (8) makes the implementation of a 
fast fitting routine rather difficult and thus not desirable. 

4. Monte Carlo simulations and experiments 

To test whether the reported results can be applied to actual time-resolved measurements, we 
also compared Monte Carlo simulations with experiments on tissue phantoms with known 
optical properties. 

In figure 9, the experimental set-up for measuring the time-resolved reflectance on tissues 
or tissue phantoms is shown. The method of time-correlated photon counting was applied 
(O'Connor and Phillips 1984). As light sources laser diodes were used that were driven by 
a picosecond light pulser (PLP-02, Hamamatsu Photonics KK, Hamamatsu, Japan). Light 
pulses with a duration of 10-50 ps (full width at half maximum) were emitted at a repetition 
rate of 10 MHz. The peak power reached - 100 mW for the wavelengths of 780 nm and 
830 nm. The light was guided through a 200 pm fibre to the tissue or tissue model. 
The scattered photons were collected at a distance d and guided through a fibre bundle of 
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Figure 8. The relative error in the prediction of pa, when REPB is used for fitting different 
park of the reflectance data, indicated by the offset b c  I*. The three c w e s  correspond to 
three difirent sourcedetector separations and the m w s  indicate data sets where only data 
points I > I,, are used for the fiiting. 

3 mm diameter to a microchannel plate-photomultiplier (MCP-PMT; R1564, Hamamatsu 
Photonics KK, Hamamatsu, Japan). Both input and collection fibres were fixed on a mount 
to assure constant spacing during a measurement. 

The MCP-PMT signals were input to a constant fraction discriminator (CFD, TC454, 
Tennelec/Nucleus, Oak Ridge, TN, USA), via an amplifier and an attenuator. The CFD 
output was fed to a time to amplitude converter (TAG 467, EG&G Ortec, Oak Ridge, TN, 
USA), as a ‘start counting’ signal. The TAC outputs were counted as discrete events by 
a pulse height analyser (PHA; E-552, 562, 563, NAIG, Tokyo, Japan) and accumulated 
until the peak count reached 100000. Then the time-response curve obtained was stored 
in a personal computer. The instrument function was measured after each measurement on 
the tissue phantoms by putting the detector and source fibres directly against each other. 
However, to prevent saturation of the MCP-PMT, neutral density filters were placed between 
the source and detector fibre ends. The instrument function was used to deconvolute the 
results from the phantom measurements yielding the corrected reflectance R(r, t ) ,  which 
was compared with the Monte Carlo simulations. 

The tissue phantoms were composed of polystyrene microspheres of 579 nm&lO nm that 
served as the scatterers and india ink (Higgins, Faber-Castell Corporation, Lewisburg, TN, 
USA), that acted as the absorber. Solutions of different concentrations were contained in a 
cylindrical vessel with a radius of 6 cm and a depth of 10 cm. The scattering coefficient of 
the media was calculated with Mie theory given the size, diffiction index, and concentration 
of the polystyrene spheres. The absorption coefficient was determined through calibration 
measurements of different concentrations of india ink in water. 
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Figure 9. A block diagram of the experimental set-up for time-comiated single-photon counting 
(MCP-PMT, microchannel platephotomultiplier; CFD, constant fraction discriminator; TAC. 
time to amplitude convelfer; PHA, pulse height analyser). 

These theoretical values for &(th) and @.(th) were used as optical parameters for a first 
Monte Carlo simulation. Subsequent Monte Carlo simulations were performed to minimize 
the error between experimental and simulation results. The Monte Carlo simulation yielding 
the best fit gives &(MC) and pLa(MC). We found that the difference between &(th), p.(th) 
and p,i(MC), pnL,(MC) was in all cases smaller than 10%. The good agreement between 
Monte Carlo simulations and the experimental data (figure 10) confirms earlier reports from 
other groups finding that Monte Carlo simulations are an appropriate method to simulate 
photon migration in tissue (Flock eta1 1989). That implies that the conclusions drawn from 
the comparison of diffusion theory and Monte Carlo simulations in the previous chapters 
also apply to experimental data. 

5. Discussion 

The question to be asked is, why does diffusion theory with the EPB give only negligible 
improvement compared to diffusion theory with the ZBC? Our findings suggest that 
the differences between time-resolved diffusion theory and Monte Carlo simulations and 
experiments cannot be resolved by choosing certain boundary conditions. The time-resolved 
diffusion theory has some inherent flaws that lead to an inaccurate description of the photon 
transport process in scattering media at early times. 

The first source of error is given by the fact that diffusion theory is acausal (Kaltenbach 
and Kaschke 1993). The speed of propagation is infinite, meaning that any change in the 
fluence at any point in the medium has an immediate effect everywhere. This truly violates 
the physical situation that the speed of light is finite. After a pulse is launched into the 
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Figure 10. A comparison of Monte Carlo simulation and experiment. The sowce-detector 
separation is 2 cm, wc = 0.0273 cm-', and wi = 13.0 cm-'. 

tissue, it takes a finite amount of time for the first photons to reach a detector. This problem 
is not resolved just by choosing different boundary conditions as figure 4 shows. 

Second, in the derivation of the diffusion equation and its boundary conditions from the 
transport equation one has to assume that the scattering is isotropic (i.e. pointlike scatterers). 
On the other hand, in biological tissues, tissue phantoms, and our Monte Carlo simulations, 
the scattering is highly anisotropic. It is well known that diffusion theory can still be 
applied to anisotropic media if the scattering mean free path l / p s  is replaced by an effective 
scattering mean free path l/[(l- g)ps] (Ishimm 1978b), as we have done throughout this 
study. Because typically g > 0.9 in biological tissues, the effective scattering mean free 
path is at least 10 times larger than the scattering mean free path. This means that at 
least 10 scattering events have to occur before a photon has lost its initial directionality 
and can be considered diffuse. In other words, enough time has to elapse to allow enough 
scattering events to occur that the photons become diffuse and diffusion theory can be applied 
successfully. The choice of the boundary condition does not influence this requirement. 

6. Summary 

In this work the formulas found from diffusion theory under three commonly used boundary 
conditions (zero, extrapolated, and partial current boundary conditions) were compared 
with each other, with results found from time-resolved Monte Carlo simulations and with 
measurements on phantom tissues. It is found that time-resolved diffusion theory with 
the extrapolated boundary condition (EPB) and diffusion theory with the partial current 
boundary condition (PCB) predict almost the same reflectance for a given set of optical 
properties and source-detector separation. On the other hand, diffusion theory with the zero 
boundary condition (ZBC) underestimates the amplitude of the signal and displays sharper 
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maxima. 
All three diffusion theory approaches fail to accurately predict the results obtained 

from Monte Carlo simulations and experiments at early times. This leads to errors in the 
determination of the scattering coefficient, while the absorption coefficient can be extracted 
from given data sets with high accuracy. A quantification of the errors in the determination 
of optical properties shows that it is sufficient to use simple linear fitting algorithms based on 
diffusion theory with the ZBC. Disregarding data before the maximum reflectance is reached 
leads to a minimal error in the prediction of pi and pa. The more complex nonlinear fitting 
algorithms, based on the EPB or PCB, yield only negligible improvements in the extraction 
of pi and pa. 

Possible reasons for the failure of the EPB and PCB to yield a more accurate description 
of the actual photon transport are the acausal character of the diffusion theory and the fact 
that diffusion theory is derived under the assumption of isotropic scatterers. 
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Appendix. Derivations of R E P B ( T ,  t ,  /.La, p:) 

Equation (16) can be written as 

h,, = -(zt + r2)/4Dct 
hz,, = -(zi + r2)/4Dct 
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dhzp/dp: = (-3/4ct)(-zi(2pa + 1 + SA/3) +r2  - 16A2/9(pL. + pi)*) (A101 

dhzoldp, = (--3/4ct)(z; + r2) ( A l l )  
dh,/dp, = (-3/4ct)(zi + r2 - 16A2/9(p. +pi)*). 01.12) 

The Levenberg-Marquardt nonlinear fitting that is used to fit R ~ p s  to the Monte. Carlo 
simulations algorithm requires the knowledge of these derivations. 

References 

Abramowitz M and Stegun I A 1972 Handbook ofMathemtlen1 Functions (New York Dover) 
Arridge S R, Cope M and Delpy D T 1992 The theoretical basis for the determination of optical pathlengths in 

Avnham D B, Taitelbaum H and Weiss G H 1991 Boundary conditions for a model of photon migration in a 

Benaron D A, Benitz W E, Ariagno R L and Stevenson D K 1992 Noninvasive methods for estimating in vivo 

Briesmeister J F (ed) I986 MCNP-A General Monte Carla Code for Neutron Photon Trmport Version 3A, 

Carslaw H S and Jaeger J C 1959 Conduction of Hear in Solidr (London: Oxford University Press) 
Case K M and Zweifel P F 1967 Linear Transport Theory (Reading. M A  Addison-Wesley) 
Chance B ei a1 1988 Comparison of time-resolved and -unresolved meaSUrements of deoxyhemoglobin in brain 

Deckelbaum L I 1994 Cardiovascular application of laser technology Larem Surg. Med. 15 315-41 
Duderstadt I J and Hamilton L I 1976 Nuclenr Reactor Annlysir (New York Wiley) pp 140-4 
Eppstein J and Burseli S E 1992 Non-invasive detection of diabetes mellitus Pmc. SPlE 1641 217-26 
Farrell T J, Patterson M S and Wilson B C 1992A diffusion theory model of spatially resolved, steady state diffuse 

reflectance for the non-invasive determination of tissue optical propeaies in vivo Med. Phys. 19 879-88 
Flock S T, Wilson B C and Patterson M 1989 Monte Carlo modeling of light propagation in highly Scattering 

tissues-II: comparison with measurements on phantoms ZEEE Tmns. Biomed. Eng. BME36 1169-73 
Glasstone S 1955 Principles of Nuclear Reactor Engineering (New York Van Nostrand) 
Gmenhuis R A, Fenverda A A and Bosch J J T 1983 Scattering and absorption of turbid materials determined 

from reflection measurements. I: Theory Appl, Opt. 22 245662 
Haskell R C, Svaasand L 0, Tsay Tsong-Tseh, Feng Tu-Chen. McAdams M S and Tmmberg B J 1994 Boundary 

conditions for the diffusion equation in radiative transfer 3. Opt. Soc. A m  A 11 272741 
Ishimaru A 19781 Diffusion of a pulse in densely distributed scatterers 3. Opt. Soc. Am. 68 1045-50 
-1978b Wove Propagation and Scattering in Random Media (New York Academic) 
Jacques S L 1989 Time-resolved reflectance spectroscopy in turbid tissue 1EEE Trans. Biomed. Eng. BME36 

115541 
Jacques S L, Gutsche A, S c h w a  J, Wang L and line1 F K 1993 Vidw reflectomeuy to exuad optical properties 

of tissues in vivo Medical Optical Tomography: Functional I-ging ond Monitoring (SPlE lmritutes for 
Advanced Optical Technologies Series IS 11) ed G Miller (Bellingham, WA: SPE) pp 21 1-26 

Jacques S L, Wang L H and Hielscher A H 1995 lime-resolved photon propagation in tissues Optical-Thermal 
Respome of Larer-lrrmiialed ?ifme ed A J Welch and M van Gemert (New York Plenum) pp 305-32 

Kaltenbach J M and Kaschke M 1993 Frequency and time domain modelling of light transport in random media 
Medical Optical Tomography: Functional imaging and Monitoring (SPIE Institutes for Advanced Optical 
Technologies Series IS 11) ed G Miiller @ellingham, W A  SPIE) pp 6 5 4 6  

tissue: temporal and frequency analysis Phys. Med. Bid. 37 153140 

turbid medium Lasers Life Sei. 4 29-36 

oxygenation Clin. Pediatr. 31 258-73 

LA-7396-Manual &os Alamos, NM: Los Alamos National Laboratory) 

1 

Pmc. Nor1 Aend. Sci USA 85 4971-5 

Keijzer M. Star M W and Starchi P R M 1988 Optical diffusion in layered media Appl. Opt. 27 1820-4 
Kohl M, Essenpreis M and Cope M 1995 The inRuence of glucose concenhation upon the transport of light in 

Moulton J D 1990 Diffusion modelling of picosecond laser pulse propagation in turbid mediaPhD Tkesis McMaster 

Lux I and Koblinger L 1991 Monte Carlo Particle Tmnsporr Melkodr: Neutron Md Photon Calculalians (BW 

OConnor D V and Phillips D 1984 Time-correlated Single Photon Counting (Orlando. FL: Academic) 
Patterson M S, Chance B and Wilson B C I989 Time resolved reflectance and transmittance for the noninvasive 

tissue-simulating phantoms Phys. Med. B i d  40 126747 

University 

Raton, F L  Chemical Rubber Company) 

measurement of tissue optical propetties Appl. Opt. 28 2331-6 



Time-resolved photon dipsion in biological tissues 1975 

Press W H, Flannery B P, Teukokky S A and Vetteding W T 1992 Numerical Recipes in C (New York Cambridge 
University Press) 

Ramanujam N. Mitchell M F, Mahadevan A, Warren S. Thomson S. Silva E and Richards-Kortum R 1994 In vivo 
diaenosis of cervical inlraeoilhelial neovlasia usine 337-nm-excited laser-induced fluorescence Proc. Not1 
Acid. Sei. USA 91 10 193-7 

- 
Svaasand L 0. Haskell D. Tromberg B and McAdams M 1993 Pronerties of vhoton density waves at boundaries - 

Proc. SPIE 1888 214-26 
Wane L H and lactlues S L 1995 Monte Carlo modeline of lizht transnort 0otical-Thm”her Resoonre of Larer- - - -  . .  

Irmdiafed Tissue ed A 1 Welch and M van Gemeret (New York Plenum) pp 73-100 (source code available 
through ftp anonymous @ 1aser.mda.uth.tmc.edu) 

Wang L H, Jacques S L and Zheng L 1995 MCML-Monte Carlo modeling of light transport in multilayered 
tissues Compuf. Methods Program Biomed. 47 131-46 

Wilson B. Park Y, Hefetz Y, Patterson M, Madsen S and laques  S L 1989 The potential of time-resolved 
reflectance measurements for noninvasive determination of tissue optical properties Pmc. SPIE 1064 97-107 


