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Abstract. The applicability of diffusion theory for the determination of tissue optical properties
from time-resclved reflectance spectroscopy is investigated. Analytical expressions from
diffusion theory using the three most cornmonly assumed boundary conditions at the air—tissue
interface are compared with time-resolved Monte Carlo simulations and measurements on tissue
phantoms. The effects of the choice of the boundary conditions on the accuracy of the findings
for the optical parameters are quantified, and critecia for accurate curve-fitting algorithms are
developed.

1. Imtroduction

The determination of optical properties (absorption /, and reduced scattering coefficient
pi) throngh time-resolved reflectance spectroscopy performed on the surface of biological
tissues can yield useful information about a variety of physiological parameters (Wilson
et al 1989). A few examples are blood—tissue oxygenation (Chaoce ef al 1988, Benaron
et al 1992), diabetes (Eppstein and Bursell 1992, Kohi et al 1995), diagnosis of cancer
{(Ramanujam et af 1994), and arteriosclerosis (Deckelbaum 1994). However, the correct
quantitative interpretation of measured data sets with respect to the optical properties is still
a major problem. Monte Carlo simulations have been found to describe the propagation of
light in tissue with high accuracy (Flock et al 1989). The drawback of such simulations
is that they are very time consuming and thus not desirable in a clinical environment. A
much faster way to extract optical properties from experimental data is to fit analytical
expressions derived from diffusion theory. However, diffusion theory has its weaknesses
because it is only an approximation to the more accurate, but in general not analytically
solvable, equation of radiative transfer. The complexity of the analytical expression found
from diffusion theory varies furthermore with the assumed boundary conditions at the tissue~
air interface.

In the work presented here, the formulas found from diffusion theory under three
commonly used boundary conditions {partial current, extrapolated, and zero) are first briefly
introduced and compared with each other. It is shown that diffusion theory with the
extrapolated boundary condition (EPB) and diffusion theory with the partial current boundary
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condition (PCB) predict almost the same reflectance for a given set of optical properties and
source—detector separation. Compared with these two cases, diffusion theory with the zero
boundary condition (ZBC) underestimates the amplitude of the signal and displays sharper
maxima.

The time-resolved reflectance determined by diffusion theory with its different boundary
conditions is then compared with time-resolved Monte Carlo simulations. The errors in
the determination of the optical properties (i, and ) using fitting algorithms based on
diffusion theory with the ZBC and EPB are quantified. It is shown that the absorption
coefficient can be obtained with high accuracy, while both theories fail to give accurate
values for w). Finally, Monte Carlo simulations are compared with time-resolved
experiments on tissue phantoms.

2. Diffusion theory

2.1. Basic equations

The equation of radiative transfer (Case and Zweifel 1967, Ishimaru 1978b) forms the basis
of almost all the modelling that is currently being conducted in tissue optics. However,
in only the simplest cases is it possible to obtain an analytical solution to this equation.
Applications to practical situations generally require restrictive approximations. Under the
assumption that the reduced scattering coefficient, u, = (1—g)u,, where u; is the scattering
coefficient and g the mean cosine of the scattering angle, is much larger than the absorption
coefficient, 1,4, the diffusion equation for a homogenous medium can be derived (Patterson
et al 1989, Ishimaru 1978a):

(1/6)3/88)p(r, 1) — DV (1, 1) + padp(r, 1) = S(r, 1) ()

where ¢ (r, t) is the diffuse photon fluence rate at the position 7, ¢ is the speed of light in
the tissue, S(r, t) describes the photon source, and D = {3[g, + /1)~ is the diffusion
coefficient. ‘

In practical applications such as measurements on biclogical tissues, the photon fluence
rate ¢ is not measured directly. The measurable quantity is the number of photons R(r, 1)
that reach the surface per unit area per unit time at a given source—detector separation r.
R(r,t) is called the reflectance and can be calculated from Fick’s law (Duderstadt and
Hamilton 1976, Patterson et af 1989) by

R{r.t) =|— DV¢(r, z,1)|z=0l- ()

Solutions for equation {1) have been given for a variety of geometries (Arridge et al
1992). In the study presented here, we concentrate on the solution for a semi-infinite
medium and how this solution can be used to quantify the optical properties from a given
data set. Before the different boundary conditions for the air-tissue interface are discussed,
the source term S{r,t) must be specified to solve the diffusion equation (1). This is
equivalent to giving an initial condition. In practical applications the source is typically a
laser beam which strikes the tissue at 90°. The points at which the first scattering events
occur are distributed exponentially into the medium, and the source can be modelled as a
line of isotropic point sources with different strengths. Usually, this source distribution is
further simplified by assuming that all incident photons are initially scattered at a depth
equal to the transport mean free path (Patterson et al 1989, Haskell et al 1994)

z0 = [ + pf]7" 3
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so that the actval source term becomes a simple delta function
Sir,t)=8r=0,z=120.t=0). @)

In this geometry the air-tissue interface is located in the @ plane perpendicular to the z axis,
at z == 0, and the laser beam propagates along the z axis. The three most commonly applied
boundary conditions that describe the air—tissue interface will now be briefly reviewed and
compared.

2.2, The partial current boundary condition (PCB)

It is reasonable to assume that light leaving the scattering medium through an air-tissue
interface does not return into the medium. This means that the photon flux from the air
into the tissue has to be zero. For a semi-infinite volume containing scatterers for all z > 0
the directional photon flux J.., at the surface is given in the diffusion approximation by
(Glasstone 1955, Keijzer et al 1988, Moulton 1990, Haskell er al 1994)

Jig=¢(rnz=0,8)/4—~ (AD/2)(3/32)¢(r, 2, )20 = 0 5)
with
A=1+r)/(1—rg) (6

(see also figure 1}). Here ry4 is the internal reflectance, due to a refractive index mismatch
between the air and the tissue. Groenhuis er al (1983) offer an approximate expression for
ry as a function of 7 = myegue/Rair:

rg = —1.440n7% +0,710n~! + 0.668 -~ 0.06361. (7)

The diffusion equation (1) with initial condition (4) and the so-called partial current
boundary condition (5) can be solved analytically, for example with the Laplace
transformation method (Carslaw and Jaeger 1959, Svaasand et al 1993). This leads to
the following expression for the reflectance (Moulton 1990, Avraham ef af 1991):

Recp(r, 1) = (4Dmc) 15 75 exp(—pqct) exp(—(zf + r*) /4 Det) Tpca(?) ®)
where
Trep(t) = (1/e)(1 = (1/y/B)/7 exp((1 + &) faperfe((1 + &) //ef)) 9
with
o =zpA/jct (10}
B=4DAjzp =4A/3 (an

and erfc(x) is the complementary ercor function defined by

2 * ,
erfe(x) = —(1 ~ f exp(—£2) dg). (12)
T 0
Equation (8) can be fitted to a given data set to yield the optical parameters u, and
;. Because Rpcp depends highly nonlinearly on u, and g/, a nonlinear fitting routine,
for example the Levenberg-Marquardt algorithm (Press et al 1992), has to be applied.
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2.3. The extrapolated boundary condition (EPB)

Instead of solving equation (1) with the boundary condition (5) directly, often an alternative
approach is pursued, invoking the principle of image sources (Glasstone 1955, Farrell ez af
1992, Jacques et al 1993). If the photon fluence rate ¢ is extrapolated into the air, using
a straight line with the same. slope as at the air-tissue boundary, (3/ az)qi(r 2, )| z=p, the
fluence rate vanishes at a distance z, (figure 1) given by

= ¢(z = 0)/[(3/82)¢(r, 2, t}|z=0] =24D. (13)

Here, use was made of equation (5). The distance z. is called the linear extrapolation
distance and leads to the so-called extrapolated boundary condition

Bz =—z,1t) =0 (14)

It is important to realize that, in postulating that the photon flux vanishes at the
extrapolated boundary, there is no implication, either from transport theory or diffusion
theory, that the flux is actually zero there. The concept of the hypothetical boundary where
the flux vanishes as a result of linear extrapolation is merely a convenient mathematical
device used to obtain a simple boundary condition.

4
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Figure 1. Extrapolation of the photon fluence at a plane interface between the diffusive medium
and air.

The extrapolated boundary condition (14) is easily fulfilled if besides the original
point source at zg an image source with the same strength but negative sign is placed
at z, = zg + 2z, (figure 2) in an infinite medium. The time-dependent fluence, as discussed
by Moulton (1990), can be writfen as a sum of two terms
d(r, z, 1) = c(dDmet) > exp{—pqct)

x{exp(=[(z — 20)* + r2)/4Dct) — exp(—[(z + z,)* +r?]/4Dct)). (15
The first term is due to the point source inside the tissue at z = zg and the second term stems
from the negative image source at z = z,. Using equation (2), the reflectance becomes
Repp(r.t) = -12-(41.')31’(:)'?"'21"5/2 exp(—pqct)

*(z0 exp(w(z% + r'z)/4Dcr) +zp exp(—(zf, 4 rz)/4Dct)). (16)

Like Rpep, Rppp depends nonlinearly on u, and wf, and a nonlinear fitting routine
has to be applied. However, the disappearance of the error function facilitates the fitting
algorithm. The partial derivations with respect to u, and &}, which are needed for the
Levenberg-Marquardt routine, are readily found and are given in the appendix.
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Figure 2. An illustration of the extrapolated and zero-boundary conditions

2.4. The zero-boundary condition (ZBC,

Physically incorrect but mathematically appealing is the so-called zero-boundary condition,
which was first suggested by Patterson et al (1989). Here, the fluence ¢ is set to zero directly
at the tissue—air interface rather than at an extrapolated distance z, above the surface. The
boundary condition becomes

¢(r,z=0,1)=0 an

and can be fulfilled by placing an image source with a negative sign at z = —zq (figure 2).
The fluence is again a sum of two terms (Patterson e al/ 1989):

¢(r.z,1) = c(dDnct) ™ exp(—pact)

x(exp(~[(z — 20)" +r*1/4Dct) — exp(—[(z + z0)* + r*)/4Dct)). (18}
Using equation (3), the reflectance is found:

Rzpc(r,t) = (4Dmc) 327512y exp(—pqct) exp(—(z2 + r?) /4 Dct).  (19)

To fit equation (19) to a given data set, it is advantageous to take the natural logarithm
of both sides of the equation. This gives

In[Rzpc(r, 1)] = & — $In(e) — (ct +3r?/4ct)p, — (3r? fAct) i, (20)

where k = % In(3(pty + 13)) — % In(4nc) + In(zo). Furthermore, it is assumed that r2 > zg,
which holds true for most practical purposes. The u! and u, dependence of « should be
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ignored, and « should be treated as an independent fitting parameter because it is usualiy
extremely problematic to determine the absolute amplitude of the reflectance signal in time-
resolved experiments. This also has the advantage that equation (20) is linear with respect
to the optical properties j, and p). Simple and fast mean least-squares fitting algorithms
can be implemented to determine p, and p) from a given data set (Press et al 1992),

It appears that the physically incorrect ZBC yields the simplest mathematical tool
for the determination of optical properties. The PCB, which is accurate in terms of the
diffusion approximation, is most difficult to implement. In the following sections, we will
establish which one of the three boundary conditions yields the most reliable theory for the
determination of optical properties from actual measurements.

2.5. Comparison of different boundary conditions

Before we compare results from diffusion theory with Monte Carlo simulations and
experiments, it is educational to compare the predictions of the theory with different
boundary conditions. To quantity the difference between the prediction of the time-resolved
diffusion theory with the ZBC, EPB and PCB, we define the ratios of

R1 = Rpep(r,t)/Rzpc(r, 1) (21a)
Ry = Rpep(r,t)/Reps(r, 1) ‘ (21b)
Ry = Rgpp(r, 1)/ Rzc(r, ). (21c)

One can observe several interesting facts. First, the ratios only depend on the time ¢
and not on the source—detector separation r. It can be easily seen that

Ry = Tpea(t) . (22)
and

Rs = (1 + (z/20) exp((z = 22)/4De1)). (23)
From this follows '

Ry = Ri/Rs = 2Tpca(t)(1 + (3p/20) exp((ef — 22)/4Dct)) ™. (24)
Furthermore, for the limit ¢ —> oo, we find that

Ri(t > o0} = Rt > o) =1+ 24 =1 (25)
which leads to

Ra(t — co) = 1. | (26)

R3(t — c0) can be determined from equation {23) by expanding the exponent and using
Zp=2+2, =z0+4AD and D/zp = % To derive Ry (t — ©0), first use has to be made
of the agymptotic expansion of the complementary error function (Abramowitz and Stegun
1972): '

erfe(x — 00) ~ [exp(—x2)/~/71(1/x — 1/2x* + O(1/x%)) (27)

with x = {1+ e)//oF (see equations (8)—(12)). Subsequently, the binomial expansion has
to be applied to the terms (1+o)™". Equation (25) shows that at late times, the ratios R; and
R3 depend only on the index mismatch of the tissue—air interface and that Rpep and Repp
are the same for ¢+ — co. Assuming a value of #;;5,. = 1.35, we obtain from equations (7)
and {6}, A = 2.919 and subsequently from equation (25), n = 2.946. This means that Rzz¢
underestimates the reflectance by a factor of 2.946 for ¢ — co. Furthermore, equations (23)
and (24) suggest that the influence of t, on the ratios defined above is small, while a rather



Time-resolved photon diffusion in biological tissues 1963

(@) Y[, -1 : :
T e
L
7’ - - s
0.9 / // 20 ’,/ i —
10 e
---- :’[// /‘// e
H o8 LA~
) - -
ol © 7 - 4 b =5cm
o A
o 07 A »
+ [/ Tl b =02cm
= I’ _____ n=135=> A =2919
0.6 {4/
]
17
HitT
0.5 WL
"0 02 04 06 08 1 12 1.4 16 1.8 2
(b) 1.015 [T T T T T T T
N : i, =02 cm’ ]
0T - n = 1.35 => A = 2.019|"
8
o 1.005
S
m
O 1 -
L‘En- B = A0 Em e e e
Il //u z e
o 0.995 il e e i
I L
o | W4 — T = § ot
VX //" ’_/ l"‘a -
0.99 H1A-A o
\ '/
0.985 R

0 05 1 15 2 25 3 35 4 45 5
Time [ns]

Figure 3. The ratio of reflectance calculated with Rpcp and () [14+2/3A]Rz5c and (b) Repp
as a fonction of time, for various pf.

strong dependence on w) can be observed. Figure 3(a) displays the ratio of Rpcp divided
by nRzzc as a function of ¢ for different (). The absorption coefficient g, is 0.2 cm™ in
all cases. In general, it can be seen that for small ¢, nRzpc overestimates the signal. As ¢
increases the difference between Rpep and #nRzp- becomes smaller and smaller. The two
theories merge faster as  is increased. To obtain an error smaller than 10%, ~ 1.3 ns has
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to elapse for the case of u) =5 cm™, but only 160 ps have to pass for p/ =40 cm™".

Figure 3(b) displays the ratio R, that is the predicted reflectance when the PCB is used
divided by the predicted reflectance when the EPB is used. It is shown that for z — co
the ratio R; is equal to unity and no differences between the two boundary conditions exist
(equation (26)). For small times, R» is larger than unity which means that Rgpp yvields a
too small signal. For large times, R, is smaller than unity, therefore Rgpp is slightly Jarger
than Rpcp. However the difference between Rppp and Rpep is very small and almost
always less than 2%. The two theories agree better as u] increases.

3. Monte Carlo simulations and diffusion theory

3.1. Monte Carlo simulations

Monte Carlo simulations are one of the most powerful tools available for the solution
of radiative transfer problems. The advantage of Monte Carlo simulations is that no
approximations are necessary, and complex geometries and optical inhomogeneities can
be modelled. As a result, Monte Carlo simulations have been used extensively to study
a variety of transport problems, especially in reactor theory (Briesmeister 1986, Lux and
Koblinger 1991). In the study presented here, Monte Carlo simulations were used as ‘gold
standards’ to test the results of the diffusion theory calculations.

A steady state Monte Carlo model (Wang er af 1995) was adapted to simulate time-
resolved propagation of photons in a semi-infinite medium (Jacques et af 1995). A 8
function pulse is injected into the tissue with given pg, fs, and g. The reflectance R{r, t)
in mm~2 ns~! is recorded as a function of the source—detector separation » and time z.
The spatial resolution was 1 mm over a total distance of 4 cm. The time resolution was
chosen to be 10 ps over a total time of 2.56 ns, giving 256 data points. The Monte Carlo
model accounts for the index mismatch at the air—tissue boundary by calculating the Fresnel
reflection (Wang et al 1995).

For most of the simulations in this work, two million photons were launched into
the tissue. Each simulation took ~ 12-48 h on a Sun SPARC station 10, depending on
the optical properties. We found that the larger the ratio u! /g, the longer the time for
one simulation (Wang and Jacques 1995). Acceptable standard deviations for each data
point could be achieved for source-detector separation up to 4 cm when p) /1, < 30. With
increasing g4}, /4, ratio the source—detector separation had to be decreased to assure accurate
Monte Carlo simulation results in reasonable computation time. To further decrease high-
frequency noise 2 moving average algorithm (Press er af 1992) was applied to smooth the
data.

3.2. Comparison of Monte Carlo simulations with diffusion theory with the ZBC

Figure 4(a) shows Monte Carlo simulations for a medium with x, = 0.2cm™, ! = 5em™,
and g = 0.92, for different source—detector separations. Also displayed are the reflectance
nRzpc predicted by diffusion theory with the ZBC (equation (19)) and the reflectance Rppp
predicted by diffusion theory with the EPB (equation (16)). The error bars indicate selected
standard deviations that were calculated from 10 simulations with the same optical properties
and source—detector separations. In this section only the Rzz¢ curves are compared to the
Monte Carlo simulations. The Rzpp curves will be discussed in the next section. As can
be seen, for times larger than ~ 1 ns diffusion theory and Monte Carlo simulations agree
very well. For smaller times, nRzpc increasingly overestimates the reflectance. The largest
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Figure 4. A comparison of Monte Carlo simulations with reflectance predicted by nRzpc and
Rgpp for (a) three different source—detector separations, where the optical properties are the
same in all cases {u; = 0.2 cm™! and u) = 5 cm™!) and (b) two different u}, where the
absorption coefficient is , = 0.2 cm™1, and the source-detector separation is 1 c¢m.

differences can be observed for the smallest source—detector separations of 1 cm.

Figure 4(b) displays Monte Carlo simulations and predictions of nRzgc and Rgpp for
two different reduced scattering coefficients. The source—detector separation is fixed at 1 em.
As the scattering coefficient increases, agreement between simulations and diffusion theory
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improves. Thus, increasing either the source—detector separation or the reduced scattering
coefficient leads to a better agreement between diffusion theory and simulations, similar to
findings reported by Jacques (1989).

To quantify the agreement between diffusion theory with the ZBC and Monte Carlo
simulations, a linear least-squares fitting algorithm based on equation (20) is used to extract
e and p, from the Monte Carlo simulations displayed in figure 4. For the fit the data
points are weighted by the inverse of their variance. However, not all data available from
the simulations are used for the fit. The typical dynamic range of time-resolved experiments
based on time-correlated single-photon counting is 10*. Therefore, only data points with
a reflectance of at least 10™* times the maximum reflectance Rpox(fmax) are used for the
fit. This defines a time range [z, %] from which data points are taken. PFurthermore, a
variable offset time #* from #, is introduced, before which all data points are disregarded
for the fit. This is done to investigate how neglecting various portions of the initial slope
influences the outcome of the fit. It has just been shown (figure 4) that the discrepancy
between diffusion theory and Monte Carlo simulation is largest for small #. Increasing t*
means cutting increasing amounts of the early part of the reflectance. The fitting algorithm
yields different values for w/(fit) and p.(fit) depending on #*. These values are compared
with the known optical properties from the Monte Carlo simulations, p/(MC) and u,(MC),
by defining the relative fitting errors for p, or u} (denoted p}, ) as

relative u':z!s ﬁtting eIror = [PL’aIs(ﬁt) _'“;IJ(MC)]/ "L’a!s(Mc)' (28)

Figure 5(a) displays the relative error in the determination of w] as a function of the
above-defined offset time #* for three different source~detector separations. The optical
properties are the same for all three curves. The arrows indicate t* for which only data
points with # 3 #yg, are admitted for the fit. This means that all data points before the
maximum reflection R, are disregarded. Taking all data leads to a strong overestimation
of g in all cases. This overestimation is reduced when r* 1s increased, which means more
of the leading edge of the impulse response is disregarded for the fit. For a source~detector
separation of 1 cm, the minimal error occurs when the data are fitted for ¢ 2> £, However,
even in this case, p!, is still overestimated by 25%. An increase in source—detector separation
leads to a smaller error in the u) determination. If the source—detector separation becomes
larger than 3 cm and the data are fitted for points ¢ 2 fiax, the error in the determination
of . becomes smaller than 5%.

In figure 5(b), the u; fitting error is shown for three different scattering coefficients
while the source-detector separation is kept constant. With increasing scattering coefficient
the determination of p/ becomes more accurate. The largest error occurs when all data
points are used for the fit. Increasing +* leads to a smaller error. However, omitting too
many points beyond f,,; results in a larger variance of the fitting parameters because the
number of points available for a fit decreases. We found that fitting data for points ¢ = fuax
gives the best results in terms of accuracy and smallest variance in the extraction of u].
Figure 6 shows the findings for the determination of u,. Again, using all data leads to
an overestimation of y,; here, however, only by 6-14%. Omitting some early data points
gives excellent fits of w, even for small source-detector separations and low scattering
coefficients. B ’

We conclude that with a simple linear fitting algorithm based on Rzpc(r,t), that is
the time-resolved reflection determined by diffusion theory with the ZBC, it is possibie to
determine the reduced scattering coefficient within 5% accuracy when the source—detector
separation is larger than 3 cm or 4/ 14z > 50. The determination of p, can be considered
exact within 2% as long as very early parts of the time-resolved reflectance are neglected.
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three different source—detector separations; (b} the three curves correspond to three different 1}
with a source—detector separation of 1 cm in all cases. The arrows indicate data sets where only
data points ¢ > tmax are admitted for the fitting.
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Figure 6. Relative error in the prediction of p,, when Rzgc is used for fitting different parts
of the reflectance data, indicated by the offset time r*. The three curves correspond to three
different source~detector separations and the arrows indicate data sets where only data points
! Z bnax are admitted for the fitting.

3.3. Comparison of Monte Carlo simulations with diffusion theory with the EPB

Beside Monte Carlo simulations and Rzp¢, figure 4 also shows the time-resolved reflectance
Rezpr(r,t) (equation (16)), which was derived from diffusion theory with the EPB.
Surprisingly Rgpp does not give a better description than Rzgc. While Rzpc Overestimates
the reflectance at small source—detector separations and low scattering coefficients, Rgpg
underestimates the reflectance in these cases. Thus, it seems that the more complicated
approach of an extrapolated boundary does not improve the accuracy where the diffusion
theory with ZBC fails.

That is furthermore supported by figure 7. Here the fitting error in the determination
of w! using an algorithm based on Rgpp is displayed as a function of #*. The curves are
similar to those shown in figure 5 for the case of Rzge. However, the negative errors
indicate that x4, is now underestimated. For Jarge source~detector separation and large 1,
the algorithm based on Rgppp gives about the same error as the method based on Rzpc,
only this time with a negative sign.

Figure 8 shows the results for the determination of u, when a fitting algerithm based
on Rgpp is used. Similar to the results shown in figure 6, using all data leads here to
an overestimation of u, by approximately 8-15%. Omitting some early data points gives
excellent fits of u, even for small source—detector separations and low scattering coefficients.
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Figure 7. The relative error in the prediction of u, when Rgpg is used for fitting different
pacts of the reflectance data, indicated by the offset time #*, The three curves correspond to
three different source-detector separations and the arrows indicate data sets where only data
points ¢ 2= f,, are used for the fitting.

3.4, Comparison of Monte Carlo simulations with diffusion theory with the PCB

As already pointed out in subsection 2.5, the difference between Rzpp and Rpcp is smaller
than 2%. Depending on the number of photons and optical parameters used, the Monte
Carlo simulations usvally have a variance larger than 5%. This remark also holds for actual
measurements. Thus, for all practical purposes, no improvement is gained when Rpcp is
used. The appearance of the error function in equation (8) makes the implementation of a
fast fitting routine rather difficult and thus not desirable.

4. Monte Carlo simulations and experiments

To test whether the reported results can be applied to actual time-resolved measurements, we
also compared Monte Carlo simulations with experiments on tissue phantoms with known
optical properties.

In figure 9, the experimental set-up for measuring the time-resolved reflectance on tissues
or tissue phantoms is shown. The method of time-correlated photon counting was applied
(O’ Connor and Phillips 1984). As light sources laser diodes were used that were driven by
a picosecond light pulser (PLP-02, Hamamatsu Photonics KK, Hamamatsu, Japan). Light
pulses with a duration of 10-50 ps (full width at half maximurm) were emitted at a repetition
rate of 10 MHz. The peak power reached ~ 100 mW for the wavelengths of 780 nm and
830 nm. The light was guided through a 200 um fibre to the tissue or tissue model.
The scattered photons were collected at a distance 4 and guided through a fibre bundle of



1970 A H Hielscher et al

0.15 T
p'=5cem*;p =02 cm” EPB |
| - o
= 3
L 0.1
(@) ]
L
U; 0.05 A
5 \:H:*‘Dﬂ-cnw_c 1 cm - i
9 o 1.5 cm
Tz 0 N e
2 : 3 em | oo, 3
(s ] ! 3
_0-05 P T T} P ST | 1 PO I ] ol 1 1 PR T P T T ) | P |

0 50 100 150 200 250 300 350 400
t [ps]

Figore 8. The relative error in the prediction of p,, when Rzpg is used for fitting different
parts of the reflectance data, indicated by the offset time #*. The three curves correspond to
three different source—detector separations and the arrows indicate data sets where only data
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3 mm diameter to a microchannel plate—photomultiplier (MCP-PMT; R1564, Hamamatsu
Photonics KK, Hamamatsu, Japan). Both input and collection fibres were fixed on a mount
to assure constant spacing during a measurement.

The MCP-PMT signals were input to a constant fraction discriminator (CFD; TC454,
Tennelec/Nucleus, Oak Ridge, TN, USA), via an amplifier and an attenwator. The CFD
output was fed to a time to amplitude converter (TAC; 467, EG&G Ortec, Ozk Ridge, TN,
USA}), as a ‘start counting’ signal. The TAC outputs were counted as discrete events by
a pulse height analyser (PHA; E-552, 562, 563, NAIG, Tokyo, Japan) and accumulated
until the peak count reached 100000. Then the time-response curve obtained was stored
in a personal computer. The instrument function was measured after each measurement on
the tissue phantoms by putting the detector and source fibres directly against each other.
However, to prevent saturation of the MCP-PMT, neutral density filters were placed between
the source and detector fibre ends. The instrument function was used to deconvolute the
results from the phantom measurements yielding the corrected reflectance R{r,t), which
was compared with the Monte Carlo simulations.

The tissue phantoms were composed of polystyrene microspheres of 579 nm+-10 nm that
served as the scatterers and india ink (Higgins, Faber—Castell Corporation, Lewisburg, TN,
USA), that acted as the absorber. Solutions of different concentrations were contained in a
cylindrical vessel with a radius of 6 cm and a depth of 10 cm. The scattering coefficient of
the media was calculated with Mie theory given the size, diffraction index, and concentration
of the polystyrene spheres. The absorption coefficient was determined through calibration
measurements of different concentrations of india ink in water.



Time-resolved photon diffusion in biclogical tissues 1971

A =780 nm 50-ps pulse

Laser /\ 3.0-mm fiber bundle
Diode MCP-PMT
0.2 mm fiber
~2¢cm
Amplifier
Aftenuator
| Y
Delay Sop | TAC = CFD
f
PHA [« -
Computer

Figure 9. A block diagram of the experimental set-up for time-correlated single-photon counting
(MCP=PMT, microchannel plate—photomultiplier; CFD, constant fraction discriminator; TAC,
time to amplitude converter; PHA, pulse height analyser).

These theoretical values for i (th} and u,(th) were used as optical parameters for a first
Monte Carlo simulation. Subsequent Monte Carlo simulations were performed to minimize
the error between experimental and simulation results. The Monte Carlo simulation yielding
the best fit gives p/(MC) and 1, (MC). We found that the difference between [ (th), 1,(th)
and p)(MC), w,(MC) was in all cases smaller than 10%. The good agreement between
Monte Carlo simulations and the experimental data (figure 10) confirms earlier reports from
other groups finding that Monte Carlo simulations are an appropriate method to simulate
photon migration in tissue (Flack ef al 1989). That implies that the conclusions drawn from
the comparison of diffusion theory and Mente Carle simulations in the previous chapters
also apply to experimental data.

5. Discussion

The question to be asked is, why does diffusion theory with the EPB give only negligible
improvement compared to diffusion theory with the ZBC? Our findings suggest that
the differences between time-resolved diffusion theory and Monte Carlo simulations and
experiments cannot be resolved by choosing certain boundary conditions. The time-resolved
diffusion theory has some inherent flaws that lead to an inaccurate description of the photon
transport process in scattering media at carly times.

The first source of error is given by the fact that diffusion theory is acausal (Kaltenbach
and Kaschke 1993). The speed of propagation is infinite, meaning that any change in the
fluence at any point in the medium has an immediate effect everywhere. This truly violates
the physical situation that the speed of light is finite. After a pulse is launched into the
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Figure 10. A comparison of Monte Carlo simulation and experiment. The source-detector
separation is 2 em, g, = 0.0273 em~!, and pf = 13.0 cm~,

tissue, it takes a finite amount of time for the first photons to reach a detector. This problem
is not resolved just by choosing different boundary conditions as figure 4 shows.

Second, in the derivation of the diffusion equation and its boundary conditions from the
transport equation one has to assume that the scattering is isotropic (i.e. pointlike scatterers).
On the other hand, in biological tissues, tissue phantoms, and our Monte Carlo simulations,
the scattering is highly anisotropic. It is well known that diffusion theory can still be
applied to anisotropic media if the scattering mean free path 1/, is replaced by an effective
scattering mean free path 1 /[(1 — g)us] (Ishimaru 1978b), as we have done thronghout this
study. Because typically g > (.9 in biological tissues, the effective scattering mean free
path is at least 10 times larger than the scattering mean free path. This means that at
least 10 scattering events have to occur before a photon has lost its initial directionality
and can be considered diffuse. In other words, enough time has to elapse to allow enough
scattering events to occur that the photons become diffuse and diffusion theory can be applied
successfully. The choice of the boundary condition does not influence this requirement.

6. Summary

In this work the formulas found from diffusion theory under three commonly used boundary
conditions (zero, extrapolated, and partial current boundary conditions) were compared
with each other, with results found from time-resolved Monte Carlo simulations and with
measurements on phantom tissues. It is found that time-resolved diffusion theory with
the extrapolated boundary condition (EPB) and diffusion theory with the partial current
boundary condition (PCB) predict almost the same reflectance for a given set of optical
properties and source—detector separation. On the other hand, diffusion theory with the zero
boundary condition (ZBC) underestimates the amplitude of the signal and displays sharper
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maxima. ‘

All three diffusion theory approaches fail to accurately predict the results obtained
from Monte Carlo sirnulations and experiments at early times. This leads to errors in the
determination of the scattering coefficient, while the absorption coefficient can be extracted
from given data sets with high accuracy. A quantification of the errors in the determination
of optical properties shows that it is sufficient to use simple linear fitting algorithms based on
diffusion theory with the ZBC. Disregarding data before the maximum reflectance is reached
leads to a minimal error in the prediction of y) and p,. The more complex nonlinear fitting
algorithms, based on the EPB or PCB, yield only negligible improvements in the extraction
of ) and p,.

Possible reasons for the failure of the EPB and PCB to yield a more accurate description
of the actual photon transport are the acausal character of the diffusion theory and the fact
that diffusion theory is derived under the assumption of isotropic scatterers.
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Appendix. Derivations of Rgpp(r,t, 1t,, pt3)

Equation (16) can be written as

Repp(r, 1) = vyt exp(—puact) (20 exp(hy,) + 2p explhy,)) (A1)
with

by = — (2§ + r*) /4 Det (A2)

hy, = —(2% +r*)/4Dct. (A3)

The amplitude y is an independent fitting parameter and thus we ignore the dependence
on p, and pl. Since @) » pu, for all cases considered in this work, we approximate
70 = (ita + pf)™ &2 (1f)™). While the derivation of equation (A1) with respect to ¥ is
obvious, the derivations with respect to [, and uj are given by

(d/dpp)Reps(r 1) = yi~> P exp(—pact)
x{(—ct + zoexp(hy,)dhy, /dig + (dzp/dits) cxp(th)-i-zp exp(th)dth /dta)

(Ad)
{d/dp})Reps(r, 1) = vt~ 2exp(—pact)(dz0/d1ty) exp(hsy) + 2o exp(h) (dhy, /A1)
+(dzp/dp;) explhy,) + 2p exp(hz‘?)(dth/dp_’f)) (AS)
with
dzo/dul = —z3 (A6)
de,/dpl, = —z5 — 4A/3 (e + 1})? (AT)
dzp/de = —4A4/3(1a + pp)* (A8)

dhy, /Al = (—3/4c)(—z3(2pta + 1) + 1) (A9)

e
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dhy, jdul = (=3/4ct)(—25Qpa + 1 +BA/3) +1° — 164%/9(ua + )% (A10)
by, fdtha = (—3/4ct)(Z2 + 1) (Al1)
dhy, fdpg = (—3/4ct)(z5 + r* — 16A%/9(pa + 117)?). (A12)

The Levenberg-Marquardt nonlinear fitting that is used to fit Rgpp to the Monte Carlo
simulations algorithm requires the knowledge of these derivations.
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